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Abstract
Completely antipersistent binary time series are sequences in which every time
that an N-bit string µ appears, the sequence is continued with a different bit than
that after the last occurrence of µ. This dynamics is phrased in terms of a walk
on a DeBruijn graph, and properties of transients and cycles are studied. The
predictability of the generated time series for an observer who sees a longer or
shorter time window is investigated also for sequences that are not completely
antipersistent.

PACS number: 05.45.Tp

1. Introduction

The analysis and generation of time series has been of interest to physicists in different fields:
it yields insight into the dynamics of chaotic systems [1, 2] and is used to study such diverse
systems as the climate and the heartbeat [3], linguistics [4], and, in recent times, financial
markets1 [5]. The prediction of time series generated by complex physical systems can be
of immense importance, as evidenced by the efforts put into improving the weather forecast.
One of the most common aspects of time series is long-term memory, or persistence. This
paper, however, will deal with the opposite behaviour, namely antipersistence.

Antipersistence is the tendency of a time series to show, at one point, opposite behaviour
to that at some point in the past. This concept is usually applied to continuous time series [6],
where ‘antipersistent’ denotes a Hurst exponent H < 0.5. However, this property has received
little attention due to the dearth of natural phenomena that exhibit antipersistence. For one of
the few studies that report antipersistence in a natural time series, see [7].

In this paper, antipersistence in binary time series is defined as follows: a sequence of
bits is antipersistent on a scale of N if a string µ of length N bits is likely to be followed
by the opposite bit to that the last time that µ appeared. This property was observed, for
example, in some parameter regimes of the conventional Minority Game [8, 9] and in various

1 For further references on time series analysis in financial markets, consult the Econophysics homepage,
http://www.unifr.ch/econophysics/.
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alternative models based on the idea of the Minority Game [10]. There, every member of a
group of players makes a decision based on a time window of the recent global history, and
it is advantageous to make the decision that the minority of all players chooses. In a very
simplified picture, antipersistence occurs if a single instance of a given history is sufficient to
change the opinion of the majority on how to react to that history.

This serves as a motivation to study the properties of antipersistent time series by
themselves: some works on the Minority Game were devoted to the question how much
use a player can make of the time series generated by the ensemble of players, especially
if he has longer memory than the competitors [11, 12]. To avoid dealing with the complex
dynamics of the game, one can approximately treat the ensemble of players as a generator of
an antipersistent time series, and consider a single player as a neutral observer trying to predict
the output of the generator.

Also, it is interesting to see whether a completely antipersistent time series can fall into
a short cycle, which could possibly be exploited by other learning algorithms such as neural
networks.

Thus, this paper will first deal with completely antipersistent time series from the point
of view of discrete dynamical systems. Properties of cycles and transients will be studied in
sections 3 and 4, respectively. Concepts and results from graph theory turn out to yield much
insight.

In section 5, the sequence is treated as an anti-predictable sequence for a special prediction
algorithm, and antipersistence on one time scale is related to properties on other time scales.
Then a more general stochastic model is introduced, and the effects of stochasticity on the
previous results are discussed, especially the question how well an observer with a different
time window can predict the time series.

2. The model

An infinitely long, completely antipersistent binary time series of bits sτ ∈ {0, 1} can by
definition be generated in the following fashion: at time t, the history µt denotes the binary
representation of the last N bits st−N+1, . . . , st . For each of the 2N possible histories µ there is
an entry a

µ
t ∈ {0, 1} in a decision table At, which also depends on t. At each time step:

• a new bit is generated by taking the table entry corresponding to the current history µt

(which I will also refer to as ‘the pattern’): st+1 = a
µt

t ;
• the history is updated: µt+1 = (2µt + st+1) mod 2N ; i.e., all bits are shifted one position

to the left (multiplication by 2), the newly generated bit is added, and the oldest (most
significant) bit is dropped (division modulo 2N);

• the table entry a
µt

t that was used for making the decision is changed, such that the sequence
will be continued with the opposite decision when the pattern µt occurs the next time:
a

µt

t+1 = 1 − a
µt

t . All other entries remain unchanged.

This last point is especially important. It means that the table entries are dynamical variables,
and the state of the dynamical system is determined by the current pattern and the state of
the decision table. Figure 1 shows two steps of the described dynamics of such a system for
N = 2.

The model can also be considered from a graph-theoretical perspective: each pattern µ

corresponds to a node on a directed DeBruijn graph of order N (see figure 2 for an example of
such a graph). Each node obviously has two edges entering it, coming from the two possible
predecessors, which I denote 0µ and 1µ. For example, if µ = 1100, the possible predecessors
are 0µ = 0110 and 1µ = 1110. Each edge also has two outgoing edges, leading to the two
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Figure 1. An example of a decision table with N = 2 and two steps of the dynamics. Boldface
numbers indicate the current history and the table entry used for continuing the sequence; italic
numbers denote the last table entry that was changed. The sequence generated in this example is
010 · · ·.
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110100
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Figure 2. The directed DeBruijn graph of order 3. Nodes represent binary strings of length 3,
edges lead to strings that are generated by shifting the current string one position and adding either
0 or 1 as the new least significant bit.

possible successors µ0 and µ1 (for µ = 1100, the successors are µ0 = 1000 and µ1 = 1001).
The graph is connected, since one can reach each node from any other node in a maximum of
N steps by taking the appropriate exit edges.

In our model, at any time, only one of the exits leaving each node is labelled ‘active’—the
one corresponding to the table entry a

µ
t . A time step consists of travelling from the current

node to the next along the active exit, then ‘burning the bridge’, i.e. labelling the previously
active exit inactive and vice versa.

3. Properties of cycles

The introduced dynamics is deterministic, and the combined system of pattern and table has
a finite number � = 2N × 2(2N) of different states, so the dynamics necessarily leads to a
cycle eventually. The dynamics is irreversible: if a currently visited node has two inactive
entrances, it is impossible to tell which path the system took to get to its current state (for an
example, see figure 3). This means that not every state can be part of a cycle, so we will have
to consider the necessary conditions for being in a cycle. I will show, step by step, that all
cycles are of length 2 × 2N and touch all nodes exactly twice.

Some of the proofs that now follow are redundant; on the other hand, they help to
understand the properties of the system, and some of them are applicable to generalizations of
the problem, whereas others are not.

Let us assume that at time 0, the system is already moving on a cycle of length l. We
count the number of times that a history µ has occurred between time 0 and time t by a visit
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Figure 3. Example for an irreversible situation on a graph of order 2. Active exits are denoted by
solid lines, inactive ones by dashed lines. The bold circle indicates the node currently visited. Both
the upper left configuration (which happens to be part of a cycle, and corresponds to the example
in figure 1) and the lower one (which is part of a transient) lead to the configuration on the right.

number v
µ
t . Since the definition of a cycle is that after l steps the system must be in the same

state again, it is necessary that v
µ

l is even for all µ, since the table entries aµ return to their
original state only after even numbers of visits.

Also, all possible nodes are part of the cycle. Let us prove this by assuming the opposite,
namely that there are some nodes that are not touched by the cycle. Since the graph is
connected, there must be unused connections between the part of the graph involved in the
cycle and the part that is left out. But as we have seen in the paragraph before, the visit
number of each of the nodes that are actually part of the cycle must be at least 2 (larger than
0, and even), so each of its two exits is used, including the one leading to the part of the graph
supposedly not included in the cycle. This is a contradiction, so all nodes are involved.

An even stronger statement is possible: the total number of visits to the predecessors 0µ

and 1µ of µ must be equal to twice the number of visits to µ, since exactly half of the visits
they get are followed by µ, while the other half is followed by the so-called conjugate state µ̄

of µ. (For example, 001 is the conjugate state of 000.) Thus, we have

v
µ

l = 1
2

(
v

0µ

l + v
1µ

l

)
for all µ. (1)

This can be written as a linear equation for an eigenvector with eigenvalue 1 of a matrix M,
with entries aνµ = 1/2 if µ is a possible successor of ν and aνµ = 0 otherwise. For example,
for N = 2, the set of equations (1) looks as follows:






1
2 0 1
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1
2 0 1

2 0

0 1
2 0 1

2

0 1
2 0 1

2




− 14







v00
l

v01
l

v10
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v11
l




=




0

0

0

0




. (2)

Since the sum of columns in matrix M is always 1, and the individual entries are � 0, and it
describes transitions on a connected graph, we can apply results from the theory of stochastic
matrices to state that it has one unique eigenvector with eigenvalue 1 [13], and we easily guess
that v

µ

l = const fulfils equation (1). That means that in a cycle, all states are visited with the
same frequency.

The next step is to show that in a cycle, each node is exactly visited twice, i.e., all cycles
of length 4 × 2N, 6 × 2N and so on, are in fact two, three or more repetitions of a 2 × 2N-cycle.
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Again, assume the system is moving on a cycle. If this cycle were truly longer than 2 × 2N,
there must, at the point t = 2 × 2N, be nodes that have been visited three or more times while
others have not been visited for the second time—the visit numbers must add up to 2 × 2N,
and if all visit numbers were equal to 2, the cycle would be complete. More specifically, there
must be an earlier time when all visit numbers vν

t are either 0, 1, or 2, and one node is about to
be visited for the third time. It suffices to show that this cannot happen to prove that the cycle
cannot be longer than 2 × 2N.

The third visit to a node µ with vµ = 2 cannot come from a predecessor (let us say, 0µ)
with a visit number of v

0µ = 0, for the obvious reason that this predecessor has not been
visited yet. It also cannot come from a predecessor with v

0µ = 1: if vµ = 2, either it must
have been visited before from 0µ (which it cannot—the predecessor has only had one visit so
far), or it must have been reached twice from 1µ—this is impossible as well, since it means
that v

1µ � 3. For similar reasons, we can exclude a visit from a node with v
0µ = 2: either

v
1µ � 3 as before, or the first visit to 0µ led to µ—then the second cannot. This means that

all nodes must receive two visits—thus finishing a cycle—before one of them can be visited
for the third time. The question arises why this line of reasoning does not hold true during the
transient. The key lies in the observation that the first node to receive three visits is the node
where the system was started—it did not get its first visit from anywhere on the graph, so the
arguments are not applicable.

Using all previous conclusions, the cycles turn out to be solutions to a well-studied
combinatorial problem, and the number of different cycles can be found in the literature:
since, during a cycle, each string µ appears exactly once followed by each of its successors,
the cycle is a sequence in which each (N + 1)-bit pattern, i.e. each node on the DeBruijn graph
of order N + 1, appears exactly once. Such a sequence is a Hamiltonian circuit, also known
as a full cycle, on the (N + 1)-graph. For a review on the properties of these cycles, consult
[15]. One of the earliest and most central results on the topic is the number of different cycles,
which is 22N −(N+1) [15].

All possible full cycles on the (N + 1)-graph can be generated by the antipersistent walk
on the N-graph: write down the desired sequence starting at some arbitrary point, look for
the first occurrence of each N-bit pattern µ, and set the corresponding table entry to the bit
that follows it. Starting the antipersistent walk at the first pattern of the desired sequence, the
antipersistent walk will reproduce it.

Since all cycles are of length 2 × 2N, a total of 2 × 2N × 22N−(N+1) = 2(2N) states is part
of a cycle. As mentioned before, the total number of possible states is � = 2N × 2(2N), which
means that a fraction of 2(2N)/� = 2−N of possible states is part of a cycle.

4. Properties of the transient

The length τ of the transient is the number of steps taken before the system enters a cycle.
The distribution of transient lengths is less accessible to analytical approaches, but easy to
measure in computer simulations, either by complete enumeration for small systems or by
Monte Carlo for larger ones. The following picture emerges, as seen in figure 4:

• The probability for transient length τ = 0 is just the probability of hitting a cycle right
away, and thus the fraction of state space filled with cycles. As mentioned, this is equal
to 2−N .

• The probability distribution is more or less flat for 1 � τ � 2N+1, the cycle length. From
normalization constraints, it follows that p(τ) ≈ 2−(N+1) in that range.
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Figure 4. Distribution of transient lengths τ , rescaled by the cycle length 2N+1.

• Near τ = 2N+1, there is an exponential drop reminiscent of a phase transition, which gets
steeper with increasing N. Even for small N, no transients longer than 2N+2 have been
observed.

5. Antipersistence on different timescales

Consider the following prediction algorithm: an observer looks at Nobs-bit strings from a
binary time series, writes down the bit that followed the pattern in the appropriate entry of his
decision table (which, of course, has 2Nobs rows), and predicts that when that pattern occurs
the next time, it will be followed by that same bit written in his table.

This algorithm, which could be labelled ‘blind reliance on recent experience’, works
well for persistent time series, and is similar in spirit to what we all do instinctively—similar
situations usually lead to similar consequences. An interesting quantity is the success rate
s(N,Nobs) of this prediction algorithm when it predicts a completely antipersistent walk on
the N-graph. For the sake of simplicity we consider the long-time limit, in which both the
generator and the observer move on a cycle.

If the observer looks at the same time window as the generator (Nobs = N ), it is obvious
that the success rate will be 0—since each pattern is continued with alternating bits on each
visit. In that sense, the generated time series is antipredictable for this specific prediction
algorithm (for more on antipredictable sequences, see [16, 17]).

For an observer with a slightly larger window, the picture changes: as mentioned above,
the antipersistent cycle corresponds to a Hamiltionian cycle on the (N + 1)-graph, which
is completely persistent and predictable with 100% accuracy. For even larger Nobs, the
antipersistent cycle looks like a closed path which includes only a fraction of 2N−(Nobs+1) of
nodes on the Nobs-graph. Prediction is again 100% reliable, and the observer does not even
need all of his storage capacity to handle the cases that occur.

If the observer has a shorter time window than the generator, more than one of the
generator’s patterns will affect the same table entry for the observer. For example, an
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Table 1. Possible permutations of predecessors and successors of a pattern ν on a cycle. The error
rate, given in the last column, is the rate of flips between 0 and 1 in the sequence of successors.
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Figure 5. Success rate of an observer keeping a table of the recent occurrence of Nobs-bit
strings and the respective following bit, for N = 16. p is the probability of flipping the exit
in the generating graph. The symbols labelled ‘theory’ were calculated using equation (3) with
approximate probabilities πl(p,N) taken from the simulation itself.

(N − 1)-bit pattern ν corresponds to either of the N-bit strings 0ν or 1ν, both of which
occur twice in the N-cycle, each time followed by a different successor. The success rate of
the predictor depends on the sequence in which these combinations occur; if each permutation
of 0ν0, 0ν1, 1ν0 and 1ν1 has the same probability, the success rate for all patterns is the
average over the different permutations. Table 1 shows that this average is 1/3 for Nobs =
N − 1.

For Nobs = N − 2, all permutations of eight combinations of predecessors and successors
have to be taken into account—a task best left to computer algebra programs, which yield
〈s(N,N−1)〉 = 3/7, in excellent agreement with simulations (see figure 5). Larger differences
in the time window are beyond even the scope of computer programs; however, it can be
argued that for larger N − Nobs, the visits to the Nobs-nodes become more and more random,
and s(N,Nobs) will tend to 1/2.
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6. Stochastic antipersistence

All of these observations relied on the fact that the generator is on a cycle with well-known
properties. It is thus interesting to ask how stable these results are if the sequence is
not completely antipersistent. The simplest generalization is to introduce a probability p
for changing the table entry/exit when visiting a node: p = 1 reproduces the completely
antipersistent walk; p = 0 is equivalent to using a constant (quenched) decision table, and p =
1/2 generates a completely random time series.

A first intuitive guess would be that even a small deviation from deterministic dynamics
completely destroys all predictability: after all, on a path of length 2N+1, there are on average
(1−p)2N+1 occasions where the the sequence is continued persistently, thus leaving the cycle.
Indeed, a single ‘error’ is usually enough to move the system from one cycle to another;
however, much of the local structure remains untouched. It turns out that the functions
s(N,Nobs, p) of prediction rates converge for large N (meaning roughly N > 12) to a set of
curves that depend only on p and N − Nobs, which is displayed in figure 5.

The limit values for p = 1 have been explained above, and they are approached
continuously for p → 1. For p = 0.5, the curves intersect at s = 0.5—no prediction beyond
guessing is possible. For small p, all curves converge to 1: the system is dominated by short
loops in which only a small fraction of the possible states participates, and those are predicted
with high accuracy.

Interestingly, between p = 0.5 and roughly p = 0.85, all shown curves are below 0.5,
meaning that even observers with longer memory predict the sequence with less than 50%
accuracy. I will give an analytical argument why this is the case for Nobs = N + 1. An
(N + 1)-bit pattern ν is a combination of an N-bit pattern µ and one of its predecessors, let us
say 0µ, whereas the companion state ν̂ is a combination of µ and the other predecessor 1µ.
A visit to either ν or ν̂ switches the exit of µ with probability p. Consider two subsequent
visits to ν, with some number l of visits to ν̂ between them. The probability s( p, N, N + 1) of
continuing with the same bit after these two visits is a sum of two probabilities: either the exit
of µ was switched upon leaving ν the first time and then switched an odd number of times
during the l visits to ν̂, or it was not switched the first time and switched an even number of
times in between. Given p and the probability πl(p,N) of having l intermediate visits to ν̂,
one then obtains by basic combinatorics

s(p,N,N + 1) =
∞∑
l=0

1
2πl(p,N)[1 + (1 − 2p)l+1]. (3)

Unfortunately, πl(p,N) does not seem to be analytically accessible for general p. It can
be measured in simulations, and the accuracy of equation (3) verified (see figure 5);
also, for p = 1/2, since the system does a completely random walk on the graph,
one gets the simple distribution πl(1/2, N) = 2−(l+1). Assuming that this distribution
does not change discontinuously near p = 1/2, equation (3) yields the approximation
s
(

1
2 + δp,N,N + 1

) ≈ 1/(2 + 2δp) ≈ 1
2 (1 − δp). This is obviously <1/2 for δp > 0,

i.e., p > 1
2 .

Numerical evidence suggests that near the point of random guessing, the approximation
s
(

1
2 + δp,N,Nobs

) ≈ 1
2 + 2−|N−Nobs|δp holds, i.e., the prediction success is below 1/2 for

all small δp > 0, but the deviation from guessing decreases as the difference in time scales
increases. As an educated guess, one can extrapolate that as Nobs − N → ∞, the success rate
will be close to 1/2 for all values of p except very close to p = 0 and p = 1, where it will
approach 1.
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The error rate 1 − s(p,N,Nobs) is a measure of the antipersistence of the time series on
the scale Nobs—for Nobs = N, 1 − s is completely equivalent to the antipersistence parameter p
of the underlying dynamics. However, even if s( p, N, N + 1) could be calculated, it would not
be possible to recursively apply this function to find the antipersistence on the scales N + 2,
N + 3, etc. In other words,

1 − s(p,N,N + 1) �= 1 − s({1 − s(p,N,N + 1)}, N + 1, N + 2). (4)

It is thus not sufficient to give a single parameter p, or 1 − s, for some N in order to characterize
the behaviour of a time series completely and to calculate its predictabilty on other scales of
observation. The scale on which the dynamics works is important as well.

7. Results and conclusion

I introduced a deterministic algorithm that generates a binary time series that is completely
antipersistent with respect to strings of length N. After a short transient, the algorithm runs into
cycles of length 2 × 2N, in which each string appears exactly twice. These cycles correspond
to Hamiltonian paths on a DeBruijn graph of order N + 1.

The cycle length is much larger than the typical cycle length of a graph with fixed
decision tables. This seems typical for antipredictable sequences: sequences that can be
predicted with 100% accuracy by some prediction algorithm usually do not require adaptation
of the algorithm’s parameters, whereas antipredictable sequences explore the combined phase
space of the sequence and the generating algorithm, allowing for more, longer, and more
complex cycles. In this case, however, the dynamics allows for fairly simple proofs of the
properties of the cycles.

Observers that keep track of the most recent occurrence of Nobs-bit strings can predict
the completely antipersistent cycle with 100% accuracy if Nobs > N, and with less than 50%
success rate if Nobs � N. If the stochasticity is introduced by means of a probability p of flipping
the exit edges, the success rate even of observers with Nobs > N can drop below 50%, which
shows that larger memory does not necessarily give better results. The rate of antipersistence
on one scale is not sufficient to calculate the rate for other scales.
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